MC gradient
estimators

UVA DEEP LEARNING COURSE
EFSTRATIOS GAVVES -1

http://blog.shakirm.com/2015/10/machine-learning-trick-of-the-day-4-reparameterisation-tricks/


http://blog.shakirm.com/2015/10/machine-learning-trick-of-the-day-4-reparameterisation-tricks/

Families of MC gradient estimators

o Score-function estimator
o Pathwise gradient estimators

o Measure-valued gradient estimators

Monte Carlo Gradient Estimation in Machine Learning
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Score-function estimator

o Better known as the REINFORCE algorithm

o Exploiting the following property
e 1 @)
dx 0gf (%) = f(x) dx

o When our function f(x) is a probability density

Vo log py(x) = VoPp (X) & VD (X) = Py (X)Vy log py, (x)

Py (X)
>V, log p(x): score-function

o Aneat trick to rewrite the gradient of a density as another density
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Deriving the score-function estimator

o As a use case the following expectation from VAE: VoE, g (zx) [logp(x|2)]
Vo Ez~q, (210 108 D (x|2)] =

= V‘Pj logp(x|z) q,(z|x)dz
VA

= Jr logp(x|z) V,q,(z|x) dz

[

= logp(x|z) q,(z|x)V, log q,(z|x) dz

z
— IIE':z~q(p(z|x) [log p(x|z) V(p log e (le)]

1 | | |
~ Z logp(x|2zV) 7, log q,(2V|x), 2z ~q, (z|x)
l
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Score-function estimator properties

o Any function f(x) amenable
> Good for simulators or black box functions (RL)

o The p,(x) must be differentiable w.r.t. to parameters ¢
o It must be easy to sample from p,, (x)

o Unbiased estimator

o High variance estimator
> The gradient will deviate a lot, but in the limit of many samples is accurate

> Increases with more dimensions
> If you sample once, this can be a problem and slow down or stop learning
° Variance reduction methods are usually needed
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Pathwise gradient estimator

o Also known as ‘reparameterization trick’

o Often the probability density can be rewritten as
> a deterministic function of a simpler probability density

o Instead of sampling from a complex pdf — sample from the simpler one
> then transform deterministically the sample

X ~p,(x) ©Xx=g(&p)e~p(e)
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Pathwise gradient estimator

X~p,(x) &x=g(p)e~p(e)

o Stochasticity flows through a simple probability density
> And, complexity flows from the deterministic transformation

> For NN it means backprop —for deterministic functions only- is possible

o At the heart of this method is the change of variables formula

Py (x) = p(e)|det V.g(g, )|
> We have seen normalizing flows using the same property
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Deriving the pathwise gradient estimator

o Asause case the following expectation from VAE: VoE, g (%) [logp(x|2)]
- z=g(g@lx) =u, + € 0,,where ¢p = (u,,0,) = dz =o,de
> det Vg (g @|x) = I1; ox,
V(p]Ez~q¢,(z|x) [logp(x|z)] -

=V, Jrz dy(Z|x) logp(x|z) dz

1
=7, | o p(@loepCrg(e gl | [ o de

- j p() V, logp(xlg (e, ¢|x)) de
&
= Ec-p(e) |Vip logp(xlg (e, ¢1%))]
1 ' '
LS toelte. 10,6016
[

lgl UNIVERSITY OF AMSTERDAM EFSTRATIOS GAVVES —- UVA DEEP LEARNING COURSE - 8

VISLab



Pathwise gradient estimator properties

o Only differentiable cost functions
> Otherwise we cannot compute the V,, f (x, g(g, ¢))
> Unlike score-function estimators that work with any cost function

o No need to know the pdf explicitly
> Only the deterministic transformation and the base sampling distribution

o Low variance in general
> Lower than the score-function estimator

- Example: if you compare the VAE score-function and pathwise gradients, the
score-function has an extra multiplicative term

1 . ) 1 .
- Z log p(x|z®) ¥, log g, (2 |x) - Z 7, logp(x|g(e®, 9))
l

o Very efficient (why proposed in VAE)
- Even a single sample suffices no matter dimensionality
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Qualitative comparison between estimators (1)

o Pathwise gradients have consistently lower variance

—— Score function —— Score function + variance reduction — Pathwise — Measure-valued + variance reduction
— Value of the cost - -+ Derivative of the cost
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Figure 2: Variance of the stochastic estimates of VgEn (4|, 02) [(m — k)Q] for p = 0 =1 as a function
of k for three different classes of gradient estimators. Left: § = u; right: 8§ = . The graphs in the
bottom row show the function (solid) and its gradient (dashed) for £ € {—3,0,3}.
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Qualitative comparison between estimators (2)

o For complex functions the pathwise gradient might have higher variance

—— Score function ~— Score function + variance reduction —— Pathwise —— Measure-valued + variance reduction
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Figure 3: Variance of the stochastic estimates of VoEar(y..02) [f(2; k)] for p = o =1 as a function
of k. Top: f(z;k) = exp(—kx?), bottom: f(x;k) = coskz. Left: 8 = p; right: = a. The graphs
in the bottom row show the function (solid) and its gradient (dashed): for k € {0.1,1,10} for the

exponential function, and k € {0.5,1.58,5.} for the cosine function. X . . . . .
Monte Carlo Gradient Estimation in Machine Learning
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