MC gradient estimators

Families of MC gradient estimators

- Score-function estimator
- Pathwise gradient estimators
- Measure-valued gradient estimators

Monte Carlo Gradient Estimation in Machine Learning

Score-function estimator

- Better known as the REINFORCE algorithm
- Exploiting the following property

$$\frac{d}{dx}\log f(x) = \frac{1}{f(x)} \cdot \frac{df(x)}{dx}$$

 \circ When our function f(x) is a probability density

$$\nabla_{\varphi} \log p_{\varphi}(\mathbf{x}) = \frac{1}{p_{\varphi}(\mathbf{x})} \nabla_{\varphi} p_{\varphi}(\mathbf{x}) \Leftrightarrow \nabla_{\varphi} p_{\varphi}(\mathbf{x}) = p_{\varphi}(\mathbf{x}) \nabla_{\varphi} \log p_{\varphi}(\mathbf{x})$$

- $\nabla_{\varphi} \log p(x)$: score-function
- A neat trick to rewrite the gradient of a density as another density

Deriving the score-function estimator

• As a use case the following expectation from VAE: $\nabla_{\varphi} \mathbb{E}_{\mathbf{z} \sim q_{\varphi}(\mathbf{z}|\mathbf{x})}[\log p(\mathbf{x}|\mathbf{z})]$ $\nabla_{\varphi} \mathbb{E}_{\mathbf{z} \sim q_{\varphi}(\mathbf{z}|\mathbf{x})} [\log p(\mathbf{x}|\mathbf{z})] =$ $= \nabla_{\varphi} \int_{\mathcal{Z}} \log p(\mathbf{x}|\mathbf{z}) \, q_{\varphi}(\mathbf{z}|\mathbf{x}) d\mathbf{z}$ $= \int_{-\infty}^{\infty} \log p(\mathbf{x}|\mathbf{z}) \nabla_{\varphi} q_{\varphi}(\mathbf{z}|\mathbf{x}) d\mathbf{z}$ $= \int_{\mathbf{z}} \log p(\mathbf{x}|\mathbf{z}) \, q_{\varphi}(\mathbf{z}|\mathbf{x}) \nabla_{\varphi} \log q_{\varphi}(\mathbf{z}|\mathbf{x}) \, d\mathbf{z}$ $= \mathbb{E}_{\mathbf{z} \sim q_{\varphi}(\mathbf{z}|\mathbf{x})} \left[\log p(\mathbf{x}|\mathbf{z}) \, \nabla_{\varphi} \log q_{\varphi}(\mathbf{z}|\mathbf{x}) \right]$ $\approx \frac{1}{n} \sum_{i} \log p(\mathbf{x}|\mathbf{z}^{(i)}) \nabla_{\varphi} \log q_{\varphi}(\mathbf{z}^{(i)}|\mathbf{x}), \mathbf{z}^{(i)} \sim q_{\varphi}(\mathbf{z}|\mathbf{x})$

Score-function estimator properties

- Any function f(x) amenable
 - Good for simulators or black box functions (RL)
- The $p_{\varphi}(x)$ must be differentiable w.r.t. to parameters φ
- It must be easy to sample from $p_{\varphi}(x)$
- Unbiased estimator
- High variance estimator
 - The gradient will deviate a lot, but in the limit of many samples is accurate
 - Increases with more dimensions
 - If you sample once, this can be a problem and slow down or stop learning
 - Variance reduction methods are usually needed

Pathwise gradient estimator

- Also known as 'reparameterization trick'
- Often the probability density can be rewritten as
 - a deterministic function of a simpler probability density
- o Instead of sampling from a complex pdf → sample from the simpler one
 - then transform deterministically the sample

$$\widehat{\mathbf{x}} \sim p_{\varphi}(\mathbf{x}) \Leftrightarrow \widehat{\mathbf{x}} = g(\widehat{\boldsymbol{\varepsilon}}, \varphi), \widehat{\boldsymbol{\varepsilon}} \sim p(\boldsymbol{\varepsilon})$$

Pathwise gradient estimator

$$\widehat{\mathbf{x}} \sim p_{\varphi}(\mathbf{x}) \Leftrightarrow \widehat{\mathbf{x}} = g(\widehat{\boldsymbol{\varepsilon}}, \varphi), \widehat{\boldsymbol{\varepsilon}} \sim p(\boldsymbol{\varepsilon})$$

- Stochasticity flows through a simple probability density
 - And, complexity flows from the deterministic transformation
 - For NN it means backprop –for deterministic functions only- is possible
- At the heart of this method is the change of variables formula $p_{\varphi}(x) = p(\varepsilon) |\det \nabla_{\varepsilon} g(\varepsilon, \varphi)|^{-1}$
 - We have seen normalizing flows using the same property

Deriving the pathwise gradient estimator

As a use case the following expectation from VAE: $\nabla_{\varphi} \mathbb{E}_{\mathbf{z} \sim q_{\varphi}(\mathbf{z}|\mathbf{x})}[\log p(\mathbf{x}|\mathbf{z})]$ • $\mathbf{z} = q(\boldsymbol{\varepsilon}, \varphi | \mathbf{x}) = \boldsymbol{\mu}_{x} + \boldsymbol{\varepsilon} \cdot \boldsymbol{\sigma}_{x}$, where $\varphi = (\boldsymbol{\mu}_{x}, \boldsymbol{\sigma}_{x}) \Rightarrow d\mathbf{z} = \boldsymbol{\sigma}_{x} d\boldsymbol{\varepsilon}$ • det $\nabla_{\varepsilon} g(\varepsilon, \varphi | x) = \prod_i \sigma_{x,i}$ $\nabla_{\varphi} \mathbb{E}_{\mathbf{z} \sim q_{\varphi}(\mathbf{z}|\mathbf{x})} [\log p(\mathbf{x}|\mathbf{z})] =$ $= \nabla_{\varphi} \int q_{\varphi}(\mathbf{z}|\mathbf{x}) \log p(\mathbf{x}|\mathbf{z}) \, d\mathbf{z}$ $= \nabla_{\varphi} \int_{\mathbf{z}} \frac{1}{\prod_{i} \sigma_{x,i}} p(\boldsymbol{\varepsilon}) \log p(\boldsymbol{x} | g(\boldsymbol{\varepsilon}, \varphi | \boldsymbol{x})) \prod_{i} \sigma_{x,i} d\boldsymbol{\varepsilon}$ $= \int_{\varepsilon} p(\boldsymbol{\varepsilon}) \nabla_{\varphi} \log p(\boldsymbol{x}|g(\boldsymbol{\varepsilon},\varphi|\boldsymbol{x})) d\boldsymbol{\varepsilon}$ $= \mathbb{E}_{\varepsilon \sim p(\varepsilon)} \left[\nabla_{\varphi} \log p(\mathbf{x} | g(\varepsilon, \varphi | \mathbf{x})) \right]$

 $\approx \frac{1}{n} \sum \nabla_{\varphi} \log p(\mathbf{x} | g(\boldsymbol{\varepsilon}^{(i)}, \varphi | \mathbf{x})), \boldsymbol{\varepsilon}^{(i)} \sim p(\varepsilon)$

Pathwise gradient estimator properties

- Only differentiable cost functions
 - Otherwise we cannot compute the $\nabla_{\varphi} f(x, g(\varepsilon, \varphi))$
 - Unlike score-function estimators that work with any cost function
- No need to know the pdf explicitly
 - Only the deterministic transformation and the base sampling distribution
- Low variance in general
 - Lower than the score-function estimator
 - Example: if you compare the VAE score-function and pathwise gradients , the score-function has an extra multiplicative term

$$\frac{1}{n} \sum_{i} \log p(\mathbf{x}|\mathbf{z}^{(i)}) \nabla_{\varphi} \log q_{\varphi}(\mathbf{z}^{(i)}|\mathbf{x}) \qquad \qquad \frac{1}{n} \sum_{i} \nabla_{\varphi} \log p(\mathbf{x}|g(\boldsymbol{\varepsilon}^{(i)},\varphi))$$

- Very efficient (why proposed in VAE)
 - Even a single sample suffices no matter dimensionality

Qualitative comparison between estimators (1)

Pathwise gradients have consistently lower variance

Figure 2: Variance of the stochastic estimates of $\nabla_{\theta} \mathbb{E}_{\mathcal{N}(x|\mu,\sigma^2)} \left[(x-k)^2 \right]$ for $\mu = \sigma = 1$ as a function of k for three different classes of gradient estimators. Left: $\theta = \mu$; right: $\theta = \sigma$. The graphs in the bottom row show the function (solid) and its gradient (dashed) for $k \in \{-3,0,3\}$.

Monte Carlo Gradient Estimation in Machine Learning

Qualitative comparison between estimators (2)

For complex functions the pathwise gradient might have higher variance

Figure 3: Variance of the stochastic estimates of $\nabla_{\theta} \mathbb{E}_{\mathcal{N}(x|\mu,\sigma^2)}[f(x;k)]$ for $\mu = \sigma = 1$ as a function of k. Top: $f(x;k) = \exp(-kx^2)$, bottom: $f(x;k) = \cos kx$. Left: $\theta = \mu$; right: $\theta = \sigma$. The graphs in the bottom row show the function (solid) and its gradient (dashed): for $k \in \{0.1, 1, 10\}$ for the exponential function, and $k \in \{0.5, 1.58, 5.\}$ for the cosine function.

Monte Carlo Gradient Estimation in Machine Learning